Software Verification and Validation

Plan
D-XXX

EOX Team

Version 0.1, 11/12/2023



DESIDE - Software Verification and
Validation Plan

1. Introduction
1.1. Purpose and Scope
1.2. Structure of the Document
1.3. Reference Documents
1.4. Terminology
1.5. Glossary
2. Overview
3. Verification
3.1. Verification activities
3.1.1. TBD
3.2. Verification criteria and acceptance
3.2.1. Test
3.2.2. Demonstration
3.3. Verification resources
3.3.1. GitLab Runner
3.3.2. GitHub Actions
3.4. Verification change control
3.5. Verification schedule
3.6. Code quality

3.7. Performance verification

© © 00 N N N9 N9 N9 o oo O o U N DN DN

—_
o



DESIDE Software Verification and Validation Plan D-XXX

COMMENTS and ISSUES PDF This document is available in PDF format
If you would like to raise comments or issues on here.
this document, send an email to <office@eox.at>.

EUROPEAN SPACE AGENCY CONTRACT EOX IT Services GmbH
REPORT Thurngasse 8/4, 1090 Vienna, Austria.
The work described in this report was done eox.at

under ESA contract. Responsibility for the
contents resides in the author or organization
that prepared it.

AMENDMENT HISTORY

This document shall be amended by releasing a new edition of the document in its entirety.
The Amendment Record Sheet below records the history and issue status of this document.

Table 1. Amendment Record Sheet
ISSUE DATE REASON
0.1 11/12/2023 Initial in-progress draft

1.0 First released version


mailto:office@eox.at
https://eox-a.github.io/DESIDE/index.html
http://eox.at/

Chapter 1. Introduction

1.1. Purpose and Scope

This document represents the Software Verification and Validation Plan (SVVP) for the DESIDE
project. This document describes generic regression/unit tests that are run on the software when
new commits are performed to ensure the software is still functioning as expected.

1.2. Structure of the Document

Section 2 - Overview

This section provides an overview of the DESIDE

Section 3 - Verification

This section provides the software verification and validation plans, activities, resources,
acceptance criteria, schedule and change control.

1.3. Reference Documents

The following is a list of Applicable and Reference Documents with a direct bearing on the content
of this document.

Reference Document Details Version

[SOW] Statement of Work Destination Earth DESP Use Cases selection 1.0
-Round 1
Reference: CS301353.Docref.0002

[Proposal] Proposal No. 8482: DestinE Sea Ice Decision Enhancement 1.1
(DESIDE) 06/06/2023

1.4. Terminology

The following terms have been used in this document.

Term Meaning
Admin User with administrative capabilities on a platform.
Code The codification of an algorithm performed with a given programming

language - compiled to Software or directly executed (interpreted) within
the platform.

Discovery User finds products/services of interest to them based upon search
criteria.

Interactive Web An Interactive Application for analysis provided as a rich user interface

Application through the user’s web browser.



Term

Key-Value Pair
Object Store

Products

Software

User

Visualization

Web Coverage Service
(WCS)

Web Feature Service
(WES)

Web Map Service
(WMS)

Web Map Tile Service
(WMTS)

Web Processing
Services (WPS)

1.5. Glossary

Meaning

A key-value pair (KVP) is an abstract data type that includes a group of
key identifiers and a set of associated values. Key-value pairs are
frequently used in lookup tables, hash tables and configuration files.

A computer data storage architecture that manages data as objects. Each
object typically includes the data itself, a variable amount of metadata,
and a globally unique identifier.

EO data (commercial and non-commercial) and Value-added products.

The compilation of code into a binary program to be executed within the
platform on-line computing environment.

An individual using the services.

To obtain a visual representation of any data/products held within the
platform - presented to the user within their web browser session.

OGC standard that provides an open specification for sharing raster
datasets on the web.

OGC standard that makes geographic feature data (vector geospatial
datasets) available on the web.

OGC standard that provides a simple HTTP interface for requesting geo-
registered map images from one or more distributed geospatial
databases.

OGC standard that provides a simple HTTP interface for requesting map
tiles of spatially referenced data using the images with predefined
content, extent, and resolution.

OGC standard that defines how a client can request the execution of a
process, and how the output from the process is handled.

The following acronyms and abbreviations have been used in this document.

Term Definition

ADD Architecture Design Document

AOI Area of Interest

API Application Programming Interface
COG Cloud optimized GeoTiff

EO Earth Observation

EOX EOX IT Services GmbH

ESA European Space Agency

FUSE Filesystem in Userspace



Term
ICD
JSON
KVP
M2M
0GC
REST
SDD
SFTP
SRF
SRN
SRP
SRS
SSH
STAC
SUM
SVvPp
SVVR
TOI
UMA
Us
WCS
WES
WMS
WMTS
WPS
WPS-T

Definition

Interface Control Document
JavaScript Object Notation

Key-value Pair

Machine-to-machine

Open Geospatial Consortium
Representational State Transfer
Software Design Document

Secure File Transfer Protocol
Software Reuse File

Software Release Note

Software Release Plan

Software Requirements Specification
Secure Shell

Spatio-Temporal Asset Catalog
Software User Manual

Software Verification and Validation Plan
Software Verification and Validation Report
Time of Interest

User-Managed Access

User Story

Web Coverage Service

Web Feature Service

Web Map Service

Web Map Tile Service

Web Processing Service

Transactional Web Processing Service



Chapter 2. Overview

This section provides an overview of the DESIDE DESIDE. It highlights ...



Chapter 3. Verification

The verification approach for the DESIDE system consists of a combination of unit testing,
integration testing, and system testing.

Unit Testing: Each component of the data pipeline undergoes thorough unit testing. Unit tests are
designed to verify the individual functionality of each component in isolation. The unit tests ensure
that the components perform as expected and adhere to the defined requirements.

Integration Testing: Integration testing is conducted to verify the interactions and compatibility
between the components of the data pipeline. Integration tests are executed to ensure proper data
flow and integration points between the components. These tests focus on verifying the overall
functionality and communication of the integrated components.

Server Testing: The server responsible for data sharing is subjected to a comprehensive set of tests.
These tests cover various aspects, including data input/output verification, data storage and
retrieval, error handling, and performance under different load conditions. The server tests are
designed to ensure the reliability, stability, and efficiency of the data sharing functionality.

System Testing: The main repository, which contains the deployment and bundling system, is
verified through system testing. System tests are designed to evaluate the end-to-end functionality
and behavior of the software system as a whole. These tests cover various scenarios and use cases
to ensure that the system operates as intended and meets the specified requirements.

To facilitate the testing process, the pytest framework has been selected as the primary testing tool.
pytest offers ease of use, is widely adopted within the industry, and provides comprehensive
documentation. Its rich set of features enables efficient test development, execution, and result
analysis.

The rationale behind this approach is to ensure that each component of the software system is
thoroughly verified in isolation, as well as in conjunction with other components to verify their
integration. By adopting a combination of unit testing, integration testing, and system testing, we
aim to identify and address any issues early in the development cycle, ensuring the delivery of a
high-quality and reliable software system.

3.1. Verification activities

This section outlines the verification activities for key DESIDE components.

3.1.1. TBD

3.2. Verification criteria and acceptance

Types of verifications performed:

* Tests

¢ Demonstration



3.2.1. Test

Test Execution: The primary acceptance criteria for verification is that all tests, including unit tests,
integration tests, and system tests, pass successfully without any critical failures or errors.

Test Results: The verification process will consider the test results generated from the execution of
the test suite. The results should indicate a high percentage of passed tests, demonstrating that the
software system meets the expected functionality and behavior.

Error Handling: The software system should exhibit appropriate error handling mechanisms.
Verification will verify that error messages are displayed accurately, and the system recovers
gracefully from errors without causing any data loss or instability.

3.2.2. Demonstration

In addition to testing, demonstration will be conducted as part of the verification process. The
demonstration aims to showcase the functionality, features, and capabilities of the software system
in a real or simulated environment.

By including a demonstration as part of the verification process, we aim to provide stakeholders
with a tangible and visual representation of the software system’s capabilities. The demonstration
serves as an effective means to validate the software against the specified requirements and ensure
that it meets the expectations of the end-users and stakeholders.

3.3. Verification resources

This section outlines the resources which are utilized for conducting of the verification activities.
The main resources are:

1. GitLab Runner
2. GitHub Actions

These resources offer the necessary infrastructure and automation capabilities to execute the
verification activities effectively. The use of a self-hosted GitLab Runner and GitHub Actions
ensures reliable and controlled environments for conducting the tests and analyzing the results.

3.3.1. GitLab Runner

The ETL components and system testing utilize a self-hosted GitLab Runner for test execution. The
self-hosted GitLab Runner provides a dedicated environment for running tests and ensures
consistent and controlled testing conditions. The configuration and management of the GitLab
Runner are handled internally by the project team.

3.3.2. GitHub Actions

Some testing activities make use of GitHub Actions for test execution. GitHub Actions provide an
automated workflow and testing environment for running tests on the server. The GitHub Actions
workflow is configured and maintained within the project’s GitHub repository.



3.4. Verification change control

Change control procedures are implemented to manage any changes to the software system during
the verification process. This ensures that changes are properly evaluated, documented, and
approved to maintain the integrity of the verification effort. The following steps outline the change
control process:

Change Identification:

* Any proposed change to the software system is identified and documented.
* Changes can include modifications to requirements, design, code, or any other aspect of the
system that may impact verification.

Change Impact Assessment:

* The impact of the proposed change on the verification effort is assessed.

» The verification team evaluates the potential effects of the change on test plans, test cases, test
data, verification schedule, and other relevant aspects.

» The assessment considers the potential risks and benefits of implementing the change.
Change Approval:

* The proposed change is reviewed and approved by the designated change control authority.

* The approval decision is based on the impact assessment, project priorities, and alignment with
the overall project goals.

* The change control authority may consist of project managers, stakeholders, or a designated
change control board.

Change Implementation:

* Once the change is approved, it is implemented according to the established procedures.

* The necessary modifications are made to the affected artifacts, such as test plans, test cases, or
verification documentation.

» The verification team ensures that the necessary updates are communicated to all relevant
stakeholders.
verification Impact Review:
+ After implementing the change, the verification team reviews the impact of the change on the
verification activities.

» Test plans, test cases, or any other affected verification artifacts are updated to reflect the
changes.

* The verification team verifies that the implemented change does not adversely affect the overall

verification process or compromise the quality of the software system.

Effective change control procedures help maintain the integrity and reliability of the verification
effort by ensuring that any changes to the software system are properly evaluated, documented,



and incorporated into the verification process. These procedures help minimize risks associated
with changes and ensure that the verification remains aligned with the project goals.

3.5. Verification schedule

The software verification activities will be conducted in a flexible manner that accommodates the
dynamic nature of the development process. While there is no fixed schedule for the verification
activities, the following approach is adopted:

1. Iterative verification: The verification process is integrated into the development iterations or
cycles. As each component or feature reaches a stable state, verification activities are
performed to ensure its functionality, performance, and compliance.

2. Continuous Integration: The verification activities are integrated into the continuous integration
and delivery (CI/CD) pipeline. Automated tests are triggered upon code changes, ensuring that
the software system is continuously verified as new features or updates are introduced.

3. Trigger-Based verification: verification activities may be triggered by specific events, such as
significant changes in the software system, updates to dependencies, or critical bug fixes. These
triggers initiate a focused verification effort to ensure the stability and reliability of the affected
areas.

4. verification on Demand: verification activities may be requested by stakeholders, such as
project managers, clients, or regulatory bodies. These requests are addressed promptly, and
verification efforts are planned and executed accordingly.

The absence of a fixed schedule allows for a flexible and adaptable approach to software
verification, enabling the verification activities to align with the evolving nature of the software
development process. The verification plan is continuously updated to incorporate any changes or
adjustments to the verification timeline.

3.6. Code quality

Code quality is a crucial factor in the software verification process, ensuring that the codebase is
well-structured, maintainable, and adheres to industry best practices. To achieve and maintain high
code quality standards, the following measures are implemented:

1. Code Review: All code changes undergo rigorous code reviews by experienced developers or
designated code reviewers. Code reviews help identify and address any potential issues related
to code style, logic errors, performance optimizations, and adherence to coding guidelines and
standards.

2. Automated Testing with Flake8 and Mypy: Automated testing tools such as Flake8 and Mypy are
employed to analyze the codebase for potential issues. Flake8 is a linting tool that checks for
coding style violations, potential errors, and adherence to coding conventions. Mypy is a static
type-checking tool that helps identify type-related errors and inconsistencies. These tools are
integrated into the CI/CD pipeline to ensure that code changes adhere to coding standards and
maintain consistent code quality.

3. Code Formatting with Black: During the development process, the codebase adheres to a
consistent code style using the Black code formatter. Black automatically formats the code to



ensure uniformity in code style and readability. By utilizing Black, the codebase has consistent
formatting, minimizing style-related discrepancies and improving code maintainability.

Test Coverage: Adequate test coverage is maintained to ensure comprehensive testing of critical
parts of the codebase. This includes unit tests, integration tests, and system tests. Test coverage
metrics are monitored to identify areas with insufficient coverage, allowing for targeted
improvements to increase the overall code quality and reliability.

Continuous Integration and Continuous Deployment (CI/CD): A CI/CD pipeline is established to
enforce automated code quality checks. This includes running Flake8 and Mypy as part of the
pipeline to identify and report any coding style violations, potential errors, or type
inconsistencies. Only code changes that pass the defined code quality criteria are deployed to
the target environment.

Refactoring and Code Maintenance: Periodic refactoring and code maintenance activities are
conducted to improve code quality, enhance readability, and address any technical debt.
Refactoring efforts are planned and executed to minimize disruptions and ensure the ongoing
stability of the software system.

By incorporating the use of Flake8, Mypy, and Black within the automated testing and development
process, we aim to enforce coding standards, identify potential errors and inconsistencies, ensure
consistent code style, and maintain high code quality throughout the software development
lifecycle.

3.7. Performance verification

In addition to functional testing, performance testing is an integral part of the software verification
process. Performance testing aims to assess the software system’s response time, scalability, and
stability under various load conditions. Locust, an open-source performance testing tool, is utilized
to conduct performance testing. The following points outline the approach for performance testing
using Locust:

1.

10

Test Scenarios and Workloads: Test scenarios are defined to simulate realistic user behavior and
workload patterns. These scenarios mimic different types of user interactions, such as
browsing, searching, and data processing, to represent real-world usage patterns. Workloads
are designed to reflect expected user loads, including the number of concurrent users, requests
per second, and data volumes.

Load Generation with Locust: Locust is used to generate virtual user load and simulate
concurrent user interactions. With Locust, we can create test scripts using Python to define user
behaviors, request patterns, and response verifications. The tool allows us to distribute the load
across multiple machines to simulate high traffic conditions.

Metrics and Monitoring: During performance testing, various metrics are collected, such as
response times, throughput, error rates, and resource utilization. Additionally, server-side
monitoring tools may be utilized to capture system-level metrics, including CPU usage, memory
consumption, and network activity. These metrics provide insights into the performance
characteristics of the software system under different load conditions.

Analysis and Tuning: The performance test results are analyzed to identify any bottlenecks,
performance degradation, or scalability issues. Based on the analysis, necessary optimizations



and tuning activities are performed to improve the software system’s performance. This may
involve adjusting configuration parameters, optimizing database queries, or enhancing system
architecture.

5. Verification Thresholds: verification thresholds for performance testing are established based
on defined performance objectives and requirements. These thresholds define the acceptable
performance levels for key metrics, such as response time, throughput, or error rates. The
performance test results are compared against these thresholds to determine if the software
system meets the performance expectations.

Proposed scenarios:
Cache tests:

* test wms using (1 workers, 100 users, 100 hatch rate)

* test wmts using (1 workers, 100 users, 100 hatch rate)
Renderer tests:

e WMS 10 users + 10 hatch rate
e WMS 50 users + 50 hatch rate

WMS 100 users + 100 hatch rate
WCS 10 users + 10 hatch rate

WCS 50 users + 50 hatch rate
WCS 100 users + 100 hatch rate

By leveraging Locust for performance testing, we aim to evaluate the software system’s
performance under realistic load conditions and identify any performance-related issues. The
insights gained from performance testing guide optimization efforts and ensure that the software
system performs optimally and meets the defined performance criteria.

<< End of Document >>

11



	Software Verification and Validation Plan: D-XXX
	DESIDE - Software Verification and Validation Plan
	Chapter 1. Introduction
	1.1. Purpose and Scope
	1.2. Structure of the Document
	1.3. Reference Documents
	1.4. Terminology
	1.5. Glossary

	Chapter 2. Overview
	Chapter 3. Verification
	3.1. Verification activities
	3.1.1. TBD

	3.2. Verification criteria and acceptance
	3.2.1. Test
	3.2.2. Demonstration

	3.3. Verification resources
	3.3.1. GitLab Runner
	3.3.2. GitHub Actions

	3.4. Verification change control
	3.5. Verification schedule
	3.6. Code quality
	3.7. Performance verification


